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Motion of a classical particle with spin: I. The canonical 
theory of multipliers 
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School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton, BN1 
9QH, UK 

Received 27 January 1981, in final form 3 August 1981 

Abstract. Using Dirac’s theory of canonical multipliers (as modified by Shanmugadhasan), 
we investigate and derive the complete canonical formalism for a well known relativistic 
model of a classical spinning particle (generalised to include asymmetry). While the 
procedure is well known from existing dynamical theory, its application to a relativistic 
asymmetric particle or top has not before been attempted. In the past, ad hoc means have 
been found for the formulation of a Hamiltonian method, and these have led to incomplete 
pictures for the model considered. Our formalism restates many well known results, using 
the calculus of Dirac brackets, but we also derive some new results. In paper I1 we use a 
computer to evaluate Dirac brackets and thus sidestep the task of algebraic calculation. 
Without such help the complete problem appears to be intractable. Paper I deals with the 
problem in general and explains the calculation of the complete set of constraints, the 
multipliers and the Hamiltonian equations for the model. 

1. Introduction 

In a previous paper (Ellis 1981) we justified the use of the ‘proper time derivative’ of 
operators in the theory of the Dirac equation in quantum mechanics, based on an 
equation of motion similar to the Heisenberg equation for the coordinate time rate. The 
formalism had certain similarities to the classical formalism for a free particle, using 
proper time rather than coordinate time as the independent variable. In the present 
work we shall not dwell on the quantum mechanical problem but consider the classical 
formalism, which is the other side of this analogy. 

Corben (1968, 99 6-8) draws some detailed comparisons between the helical 
solutions of the classical free particle equations 

(where a dot denotes differentiation with respect to the proper time) and the zitter- 
bewegung of the Dirac equation in quantum mechanics. In these comparisons the 
classical canonical formalism lacks a concrete basis. The ‘Hamiltonian’ is postulated 
and the ‘Poisson bracket’ relations are obtained not by the use of the usual definition but 
from known properties of the observables (e.g. the Poisson bracket relations for the spin 
tensor sclv are based on those satisfied by the infinitesimal generators of the inhomo- 
geneous Lorentz group). In the following we remove this restriction and give the 

‘t This work was carried out in part while on leave of absence between October 1979 and September 1980. 
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410 J R Ellis 

complete canonical description for these equations which, we believe, has not before 
been attempted?. The association with the quantum mechanical equations (based on 
the use of the above-mentioned operator) can be investigated more precisely than has 
been the case in Corben’s theory. 

A crucial feature of the equations (1.1) (we shall refer to these equations of Corben 
subsequently as the ‘free spinning particle equations’) is that in the canonical formalism 
the third member of the equations (1.1)-the ‘supplementary condition’-leads to 
constraints between the coordinates and the momenta. However we try to represent 
the spin tensor in terms of coordinates and momenta in the canonical formalism, this 
third equation will lead to constraints that cannot be resolved. Consequently we must 
use the canonical formalism introduced by Dirac (1964, see below) in order to take 
these constraints into account properly. The revised canonical formalism leads to 
‘modified’ or ‘Dirac’ brackets in place of Poisson brackets, and in I1 we show that many 
of the ‘Poisson bracket relations’ postulated by Corben for these classical free spinning 
particle equations can be confirmed in our formalism as Dirac brackets. (Similar work 
by Rafanelli (1967) is also confirmed in this sense.) 

We shall postulate a simple Lagrangian function for Corben’s model (slightly 
generalised to include asymmetric particles), and we shall subsequently make use only 
of the geometry of a moving tetrad of vectors in specal relativity. By such means we 
calculate without further postulates the complete set of canonical constraints, the 
canonical multipliers and the covariant Hamilton equations (in I), and the Dirac 
brackets and the relations they satisfy (in 11). The choice of this Lagrangian is therefore 
important. The one given here is the most strongly related to the ordinary classical 
formalism in having an identifiable ‘spin-energy’ term, from which the more general 
equations than Corben’s-equations for a particle endowed with moments of inertia 
Ii,-can be obtained. Corben relaxes the supplementary condition (Corben 1968, 0 9) 
when describing this more general case, and his theory is developed by analogy with 
non-relativistic theory. He splits the spin tensor into components that generalise the 
classical equations. Obviously it is better to describe the motion of the symmetric and 
asymmetric cases entirely within the previous framework where the supplementary 
condition is used. Our Lagrangian equations, which include a more detailed structure 
of the spin tensor and which lead to the same basic equations of motion subject to the 
Frenkel condition as a supplementary condition, have already been discussed (Ellis 
1975a) and we shall not reconsider them in great detail. 

As in the present problem, the occurrence of subsidiary conditions between the 
dynamical variables leads us to use Lagrange multipliers in the Lagrangian function$. 
The resulting Lagrangian is then degenerate (i.e. its Hessian matrix is of constant 
singular rank everywhere within the space of the arguments of the Lagrangian), with the 
consequence that constraints between the canonical variables arise. This, in turn, leads 
to the need for a modified canonical theory. Such a canonical theory was developed 
originally by Dirac (1950, 1959, 1964, 1969), who also included a quantisation 
procedure. The method has been described in several texts (see, for example, those of 

t It appears that the complete formalism for equations of this type has not before been given, apart from two 
well known instances: that for the spherical particle based on the Nakano condition was considered recently 
by Hanson and Regge (1974), and Dirac’s formalism has also been used by Hughes (1961). 
$ In essence, this use of Lagrange multipliers is an essential one for the present Lagrangian formalism, since 
no equivalent formalism based on a Lagrangian homogeneous of the first order in the generalised velocities 
exists, i.e. the variation of J L d7 cannot be simplified by change of independent variable (cf Barut 1964, pp 
60-5). 
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Mercier (1959), Sudarshan and Mukunda (1974), Mann (1974)), and in the literature 
the method has been developed and applied by a number of authors (Anderson and 
Bergmann 195 1, Haag 1952, Kundt 1966, Shanmugadhasan 1963, 1973, Mukunda 
1976, and many others). This canonical theory leads to the definition of the Dirac 
bracket, which is the natural generalisation of the Poisson bracket, to be adopted in the 
Dirac correspondence when there exist independent constraints between the phase 
space variables. 

Shanmugadhasan (1973) in particular has shown that where there are first-order 
Lagrange equations, Dirac’s multiplier rule is inadequate. The evaluation of the 
canonical multipliers in this particular problem reaffirms Shanmugadhasan’s finding, 
and we also show by this example that his procedure is itself insufficient for the 
determination of all the multipliers, since his method applies only to Lagrangian 
systems for which all of the derivatives of the first-order Lagrange equations hold by 
virtue of all the undifferentiated Lagrange equations. Many Lagrangian systems 
(including the present) whose degeneracy arises by the use of Lagrange multipliers do 
not fulfil these conditions and some extension of his method is required. The present 
problem is sufficiently complicated that the generality of our approach is well displayed. 

In 9 2 we introduce the Lagrangian formalism by defining the geometrical variables 
involved. In 9 3 we describe the method by which we calculate all the canonical 
constraints without the use of the multiplier rule. These constraints arise in three ways 
as first- and second-kind primary constraints and also as ‘secondary constraints’ (the 
latter form the basis of the extension to Shanmugadhasan’s theory). The mutual Poisson 
brackets of all these constraints (called the set of subsidiary conditions on the canonical 
variables) are evaluated and simplified by using the constraints, and we distinguish 
between constraints that are first and second class. In contrast to the iterative use of the 
multiplier rule (Dirac 1964), which we have found to be inapplicable to this type of 
problem, we use in Q 4 the multiplier rule only once to confirm that we have all the right 
equations. This entails adding, to the primitive Hamiltonian, canonical multiplier terms 
for the second-class constraints, which have a physical effect. As in the current theory 
of canonical multipliers, the number of second-class constraints must be even, and all 
these multipliers can be determined. The resulting first-class Hamiltonian may be used 
in Hamilton’s equations and these equations give all the correct equations, confirming 
that we have found a complete set of constraints. 

2. Lagrangian formalism 

2.1. Geometrical notions 

We initially suppose that the particle’s position relative to some fixed inertial reference 
system is given by the coordinates x@(p = 0, 1,2,  3) where xo = ct, x 1  = x, x2  = y ,  x 3  = t. 

The metric of special relativity is taken in the form dT2 = gru dx, dx” with g,, = 
diag(1, -1, -1, -1). A dot denotes differentiation with respect to the proper time 7, 
and square brackets denote antisymmetrisation: thus, 2a[rb”1 = a&b” - a”b’l. The 
relative tensors (alternating symbols) E ~ , , ~ ~ ,  E ~ ” ~ ~  have the value 1 when the suffixes 
represent an even permutation of 0, 1, 2, 3; -1 when they represent an odd permu- 
tation; 0 otherwise. (The &-symbol effectively changes sign whenever all of its suffixes 
are raised or lowered.) The three-suffix symbol eiik will also be used. Latin suffixes will 
range over the values 1 ,2 ,3 ;  Greek suffixes over 0, 1 ,2 ,3 ;  repeated suffixes will always 
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be summed (there will be no exceptions), be they Latin or Greek. Duality is defined by 
s”*Y - -$&”LYOLCI 

S a p .  - 4 
S @ * V  = $E&”,BS , 

The four-velocity 1’’ satisfies the equation X w i w  = 1, and three internal space-like 
four-vectors u t j  ( i  = 1 , 2 , 3 )  whose components satisfy the equations 

i%([J@ = 0, uLu(, ,w = -&r (2.1) 

are called the internal coordinates of the particle. For each i the four-vector represent- 
ing the ith axis is orthogonal to x”, and the three internal axes form, with iw, the moving 
tetrad of vectors representing the instantaneous rest-system for the particle. 

In order to measure the rate of rotation of this frame the following three Lorentz 
invariant scalars 

(2 .2)  

are introduced, analogous to the three non-relativistic components of angular velocity 
( U x ,  U y ,  U=) :  

for a moving frame i, j ,  k in classical mechanics. This ‘point of contact’ with classical 
mechanics is, however, temporarily lost when we try to construct an angular velocity 
four-vector by using relations (2.1). We have 

(2 .3)  
(We have used the relations (2.1) in a tensor form analogous to i = j A k, . . . for the 
moving frame-see 8 Al.  1 .) 

When the three scalars utL) vanish, the internal velocities d; ,  do not vanish unless 
the particle moves with uniform velocity: the three internal axes undergo Thomas 
motion along the world line (see below): 

def 
U’’ = U ( l  ,U ;) = i ce  irAuri ,lJ*u,l)uxT. 

L i C )  = - ( Y u ( , J v ) i ” .  

In other words, the U ’ S  are Fermi-Walker transported along it. This covariant equation 
arises in the discussion of the Thomas precession of any space axis (see, for example, 
Mann (1974, formula (1.104), p 21)).  More generally, when U,, )  # 0, the kinematical 
equations (2.2), (2.3) lead via (2.1) to ‘extra‘ (‘Thomas’) terms in the equation for the 
rate L iC j  that are additional to those involving ordinary rotation and which are consistent 
with the rate of Thomas precession in the absence of rotation (Bacry 1962, Nodvik 
1964) : 

e ”y”@UOLxp. n w v  Ef (XWX “ - x ”1” ) + - 1 

These kinematical equations are obtained from (2.3) by using the derivatives of (2.1) 
($  A1.2).  The equations ( 2 . 4 ~ )  can also be expressed in the form 

Lit) = ( - ~ ” u ( ~ ) ~ ) i ”  - C - ‘ & l , k W ( , ) u $ j ,  (2.46) 

analogous to the classical results di/dr = w z j  - wvk, . . . , but these results include the 
extra Thomas terms. 
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Either ( 2 . 4 ~ )  or (2.4b) will confirm that when the three scalars qi) vanish (or, 
equivalently, w ” = 0), the internal coordinates undergo Thomas motion (the equations 
are those of Fermi-Walker transport). Conversely, when the rest frame performs this 
motion, the w’s vanish by (2.2). 

We postulate a mechanical spin angular momentum of the particle by direct analogy 
with classical mechanics: 

The l’s are constants, or are arbitrary Lorentz invariant functions of 7. We do not 
specify how the relations (2.5) could be obtained by a limiting operation from a particle 
of infinitesimal size, but we suppose that a spherical particle results from the choice 
I.. = IS ... 

A mechanical spin angular momentum four-vector S k c h  is required, and this is 
defined in a like manner to U @ .  A mechanical spin tensor is also defined: 

11 11 

2.2. The Lagrangian 

The Lagrangian equations arising from the following Lagrangian have been derived 
previously and are reproduced in § A1.3. The Lagrangian is chosen so that the free 
spinning particle equations (1.1) can be derived as Lagrangian equations in a general 
way using moments of inertia. The Lagrangian model automatically leads to the free 
particle equations (1.1): 

1 mech L = - $ m o ~ * ( i ” i ~  - I ) + T s ( ~ )  w(j)+AojX”u(,), + $ A j , ( ~ c ) ~ ( j ) ~  + S j j ) .  (2.7) 

The kinetic energy terms are chosen on the basis of similarity with classical mechanics, 
and the second term representing the spin-energy assumes the use of (2.2) and (2.5). 
The condition i@i, = 1 and the relations (2.1) are enforced in the Lagrangian formal- 
ism by the use of the scalar invariant Lagrange multipliers ma, Aoi, A j j ,  where the 
multiplier ma is taken without loss of generality to be the rest mass of the particle; it is 
further understood that Aii is identical to A j j .  The use of Lagrange multipliers is 
essential, since no equivalent formalism based on a Lagrangian homogeneous of the first 
order in the generalised velocities exists. 

The 26 canonical coordinates are x”, uc),  mo, Aoi, A j i (=Aj i ) .  The 26 canonical 
momenta are defined as 

def no = -aL/arizo, 
def noi = -aL/a,ioi, 

(2.8) 
def n, = -aL/a,iji. 

The last expression is assumed to be defined only for the pairs of suffixes 2 ,3 ;  3 , l ;  1 , 2 ;  
1, 1; 2 ,2 ;  3 , 3  (the order of suffixes for A j j  is immaterial), and we symmetrise by defining 
nij = nji. We introduce the following combinations of canonical variables: 

(2.9) 

here called the internal components of canonical spin, and the canonical spin tensor, 
respectively. 
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When the canonical momenta (2.8) and the combinations (2.9) are evaluated for the 
Lagrangian (2.7) (§  A1.3) the following values are found: 

The last value is the mechanical momentum for the equations (1.1). The first two values 
are the internal components of mechanical spin and the mechanical spin tensor given in 
(2.5) and (2.6), respectively. Thus the canonical values are the same as the mechanical 
ones, and the spin tensor automatically satisfies the Frenkel condition of spin swv,<,, = 0 
by virtue of (2.6). The second-order Lagrange equations give rise to the free spinning 
particle equations (1.1) : 

p” =0 ,  j w  +2p’w~’ l=0 ,  12.111 

and the first-order Lagrange equations ensure that the constraints (2.1) are satisfied, 
and ensure the unit norm of i”. 

The structure we have given to the tensor sK;ch manifests itself in the Lagrangian 
formalism in the derivation of the equations 

j , r , + c  ‘ & i l k W , l ) S ( k ) =  0, 12.12) 

representing the constancy of the spin angular momentum in the particle’s rest frame. 
leading (for constant 2‘s) to Euler’s equations for the system. 

3. The canonical constraints 

3.1. The definition of the Poisson bracket 

When the spin-energy term is represented in terms of the U’S and the U’S by the 
expressions (2.2) and (2.5), the Lagrangian L given by (2.7) is a function of 26 
coordinates (as above) and the 16 velocities x”, L iK) .  The ma and the A’s are 10 
coordinate multipliers, and there is an explicit dependence on T through I!,. The 26 
canonical momenta have already been defined by (2.8). 

We shall require certain combinations of the canonical variables, including the 
combinations (2.9). These are: 

def (T def 
cs, = &, jkU,  T k c n  = -2uj”.rr:“, 

(3.1a) 
del def def 

A’” = Aolu?, u F  = (pF+Ai”) /mOc2 ,  s ”  = s,uf. 

(We have now dropped brackets in suffixes, for convenience.) The combinations 
represented by v” and s p  are values of the velocity and spin four-vectors, expressed in 
terms of the canonical variables; these values arise in the Lagrangian formalism (see 
5 A1.3). The combinations represented by s, and s p y  are the internal components of 
spin and the spin tensor defined by (2.9), and already shown equal to the mechanical 
values. Based on the value found for s”“ it can be shown that the following combina- 
tions of canonical variables represent the mechanical orbital and total angular 
momenta : 

def 
m@“ = - 2 x [ ” p y 1  j f i ’  = pn”’ +s”’. r3.l.b) 
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The Poisson bracket of two quantities is defined in the usual way, and is with respect 
to all 26 pairs of canonical variables: 

(3.2) 

The space components of the four-vector represented by p ,  in (3.2) are the components 
of -cp, where p is the three-momentum. Consequently this definition of the Poisson 
bracket will differ by a factor of -c from the usual definition. 

The Poisson brackets of the quantities representing position, momentum, and 
orbital, spin and total angular momentum can be found. The calculations for these are 
quite straightforward from the definition (3.2) and do not depend on the precise form of 
the Lagrangian (2.7). Because there are constraint equations in phase space, connec- 
ting the canonical variables, the definition (3.2) for the Poisson bracket must be 
modified in order that the correct equations of motion are obtained. The modified 
Poisson bracket is called the Dirac bracket, and details of these calculations are given in 
paper 11. 

+ a t  877 a t  877 

+two similar terms +two similar terms. 

3.2. The ’first-kind’ primary constraints 

Normally, in the derivation of the canonical equations arising from a Lagrangian, the 
Hessian matrix of the Lagrangian is non-singular, so that all the generalised velocities 
may be uniquely solved in terms of the canonical variables and the (proper) time. The 
Hessian matrix of the Lagrangian is the square matrix of second-order partial deriva- 
tives of the Lagrangian with respect to all the generalised velocities. In the present 
problem the Hessian matrix of the Lagrangian (2.7) for a free particle, with respect to all 
the generalised velocities, is 26-dimensional and singular of rank at most 16, when the 
spin-energy term is represented by the expressions (2.2) and (2.5). We therefore use 
the degenerate formalism. Initially we use the formalism of Shanmugadhasan (1973) 
with n = 26 and rl = 10. 

Because the difference between the dimensionality and the rank of the Hessian 
matrix is at least 10, there are at least 10 subsidiary conditions expressing the functional 
dependences for the canonical variables that follow immediately from the singularity of 
the Hessian matrix . (These subsidiary conditions we shall call first-kind subsidiary 
conditions.) In the present problem these subsidiary conditions are immediately 
identified as the 10 zero momenta conjugate to the multipliers: 

def def def 
40 = no-0, q5,i = n,i “0,  q$. = nij “ 0, (3.3) 

where the special symbol of Dirac (1958), ‘ = I ,  denotes that they are weak equations, 
i.e. they must not be used before working out the Poisson brackets, defined in (3.2). 

In the general theory for a degenerate Lagrangian there are rl first-kind conditions, 
where n and (n - r l )  are respectively the dimension and rank of the Hessian matrix. The 
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method has been explained by Shanmugadhasan (1973) in the section leading to his 
equation (1  l), p 680, and also by Mukunda (1976) in the work preceding equation (2.41, 
p 416. 

3.3. The ‘second-kind’ primary constraints 

In Shanmugadhasan’s formalism it is shown that further subsidiary conditions on the 
canonical variables are required and these conditions cannot be obtained by using 
Dirac‘s theory of multipliers. Such subsidiary conditions arise from the first-order 
Lagrange equations (and will be called ‘second-kind’ conditions). In the case of our 
degenerate Lagrangian (2.7), which does not contain the velocities corresponding to the 
multipliers, the vanishing momenta (3.3) lead to first-order Lagrange equations that do 
not contain these velocities. When the velocities they do contain are substituted in 
terms of the canonical variables only, we obtain the second-kind conditions. These are 
the following 10 weak equations: 

(bb = moc ( u w u w - l ) = O ,  ~$b,  = moc uwulw2:0, d:, = u?u,,+cj,,=O. (3.4) 

The velocities iw have been eliminated by using the value of p w  derived from the 
Lagrangian: 

de€ def def 2 4 

p f i  = moc2iw - A @  (3.5) 

(the formula reproduces our definition of U @  in ( 3 . 1 ~ )  and is derived in $ A1.3). 
As far as the derivation of these ‘second-kind’ conditions is concerned, the general 

theory appears to follow two quite separate paths. In the resumC of the Dirac theory 
given by Mukunda (1976) the method for finding the second-kind conditions is not 
given. It is stated (p 419) that the process of using the multiplier rule ‘continues and at 
the end of it, there will be a set of self-perpetuating constraints’ (presumably including 
the 4”s). This is in essence fhe Dirac theory. On the other hand, Shanmugadhasan 
believes that the current theory of multipliers does not correctly handle the subsidiary 
conditions because all the subsidiary conditions must be known before setting up the 
multiplier rule and before the canonical theory is applied. Consequently the multiplier 
rule cannot be used to obtain these conditions. (His method for finding the rz ( s r l )  
second-kind conditions is given in the sections leading to his equation (13) ,  p 680.) 

It is quite clear that the constraints (3.4) cannot be determined from (3.3) using the 
current theory of multipliers, although the constraints (3.4) are necessary for the 
canonical formalism. We therefore use Shanmugadhasan’s formulation and we anti- 
cipate that there may be further constraints arising from the derivatives of all these 
constraints. 

3.4. The secondary constraints 

In Shanmugadhasan’s treatment there is an assumed limitation in the scope of the initial 
Lagrange problem and no further constraints on the canonical variables beyond the 
primary constraints arise. However, it can be shown that further constraints, in addition 
to primary ones, are required. Because of the formal similarity with Dirac’s procedure 
for finding new constraints, we have called such constraints secondary constraints and 
denoted them by x’s, as in Dirac’s theory, but they may not be deducible from the 
multiplier rule in general. Our procedure falls outside the scope of Shanmugadhasan’s 
here, because his treatment is limited to those Lagrangians that satisfy the requirement 
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that the time derivatives of the first-order Lagrange equations hold by virtue of all the 
undifferentiated Lagrange equations-the ‘consistency conditions’ on the Lagrangian. 
These conditions are not satisfied by the Lagrangian (2.7)t. 

One method for finding these secondary constraints is to differentiate the first-order 
Lagrange equations and then to substitute for the velocities in terms of the coordinates 
and the momenta. This process of differentiation and substitution is continued until all 
the secondary constraints have been found. The use of the Lagrange equations in this 
process is also allowed. 

However, though this method may be successful in certain cases for determining the 
secondary constraints, there is considerable difficulty in the present problem in 
expressing the velocities u t  in terms of the coordinates and the momenta via the 
complicated expressions that are found for the momenta (see 9 A1.3): 

Tt = -ac2EpinEqk,IWU~u~U,~. (3.6) 
We have therefore used an alternative method. We have found it more convenient to 
use the relationships that the momenta (3.6) satisfy directly by virtue of the first-order 
Lagrange equations. Some or all of the secondary constraints must involve the T’S since 
they have as yet been unused in any of the constraints. These relationships will include 
the nine constraints 

def def 
xoi = moc V & T ~ ,  “0, x.. = #U. I /w +T?’u. I I * = = O ,  (3.7) 

which follow from (3.6). However, this will not produce all of the secondary con- 
straints. 

The remaining secondary constraints may be found by taking into account the 
conditions on the canonical variables derived from the Lagrange equations, that do not 
involve proper time derivatives (we consider how many combinations of the 52 
canonical variables may be chosen arbitrarily subject to such conditions). After some 
work, we find that only one further secondary constraint is required, and this is the 
unused constraint on the T’S occurring in the Lagrangian equations: 

(3.8) 
All other similar conditions on the canonical variables derived from the Lagrange 
equations may be deduced directly from the 29 constraints (3.3), (3.4), (3.7) already 
found. (We mention that this does not apply to the precise values of the A,’s occurring in 
the Lagrangian equations.) 

The final secondary constraint (3.8) may also be determined by using the multiplier 
rule with the previous incomplete set of 29 constraint equations, so that this is in some 
sense a confirmation of it. We emphasise, however, that not all of the secondary 
constraints (3.7), (3.8) may be determined by using the multiplier rule with the set of 20 
primary constraints (3.3), (3.4). 
t Even where the Lagrangian is such that all of the derivatives of the first-order Lagrange equations hold by 
virtue of all the undifferentiated Lagrange equations, Shanmugadhasan (1973) has shown that the canonical 
multiplier rule cannot, in general, be used iteratively to generate all the constraints. Consequently we must 
rely on the initial Lagrangian formalism to produce the phase space constraints, and we use Shan- 
mugadhasan’s formalism to deduce the first two types of constraint given above, since we believe that this 
correctly interprets the theory. (The completeness of the constraints is, in any case, later checked by the 
once-and-for-all use of the multiplier rule, to deduce all the original Lagrange equations canonically, so the 
initial formalism is really an academic point, the main concern being the production of the complete set of 
constraints by some method or other.) 
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The above procedure is now confirmed by the use of the multiplier rule (see below) 
on the 30 constraint equations (now called the ‘subsidiary conditions’), where it is 
verified that the derivatives of these conditions give rise to no further constraints 
beyond the constraints already found. 

3.5. The Poisson brackets of the constraints 

Dirac’s canonical theory involves the use of the multiplier rule in a restricted form, 
where fewer constraints arise in the canonical equations. The ‘secondary constraints‘ 
are assumed not to arise in the total Hamiltonian. According to Dirac’s theory, the 
consistency conditions (see below) arising from the time derivatives of the original 
constraints lead both to equations for the multipliers and to new equations between the 
canonical variables. In the latter case they are regarded as new constraint equations. In 
comparison with this treatment, the multiplier rule cannot here be used to generate new 
subsidiary conditions from the given ones, as in Dirac’s theory, since we are not given 
beforehand a set of (primary) subsidiary conditions which are known to be the only ones 
arising in the canonical equations of motion. All the subsidiary conditions are equally 
likely to appear in the total Hamiltonian. 

We later confirm that the set of 30 constraints (3.31, (3.4), (3.71, (3.8) forms a 
complete set. We follow Shanmugadhasan’s general theory and make no distinction 
between primary and secondary constraints. We treat the constraints on an equal 
footing. We here calculate the 30-dimensional matrix of Poisson brackets (PBS), using 
the constraints to simplify the brackets only after the differentiations have been 
performed. Thus the values of the PBS of the constraints with each other are given in the 
table below. (In I1 we compute the inverse of a submatrix of this matrix of PBS. In order 
to make this calculation easier we re-order the constraints and renormalise some of 
them, and this new arrangement is used in the table.) 

With the use of the 30 constraints, we may construct further constraints, which may 
be used to replace any or all of the 30 in any different formulation of the problem. These 
constraints, functionally dependent on the 30 given ones, are used later, after setting up 
the multiplier rule. We have given some of these in appendix 2. Such equivalent 
constraints include, for example, the Frenkel condition swyu,, ==O in terms of the 
definitions (3.1 a ) .  

The only first-class constraints are the six constraints 41, = 0, which are the vanishing 
momenta conjugate to the multipliers All.  These are the only constraints adjacent to 
rows (or columns) of zeros. (First-class constraints are the constraints that correspond 
to rows (or columns) of zeros in the (r3-dimensional) matrix of mutual PBS of the 
constraints. They have no effect on the equations of motion. Other rows and columns 
form the non-singular submatrix of PBS of the second-class constraints of even dimen- 
sionality (r4).) 

4. The derivation of Hamilton’s equations 

4.1. The canonical multipliers 

The following argument now traces Shanmugadhasan’s multiplier rule as it is applied to 
the (complete) set of 301 constraints (3.3), (3.4), (3.7), (3.8). The Hamiltonian for the 
t We have included the first-class constraints, although the corresponding multipliers will remain undeter- 
mined and may be set to zero. 
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motion is written in the form 

H = Ha + pa40 + pot401 + h&,, + ~ b 4 b  + pbAb, +b + W X O +  ~ O ~ X O ,  + ~~~,.x~,, (4.1) 

where the p’s, p”s and v’s are arbitrary multiplier functions to be determined. (The 
functions p,,, p:!, v,, are assumed, without loss of generality, to be symmetric in the 
suffixes i, j . )  The Hamiltonian Ho is found in the usual way, normally by the use of the 
first-kind conditions only, but this restriction is not necessary. We may use any of the 
constraints to simplify it: 

Ha= -(p”X’, + rryLi,, +nor j lo+rIo ,Ao,  +rI11;\11+ * . . + n&+. . i - L  

(for an explanation of the signs, see, for example, Mann (1974, p 127)) 
2 =-mot - rryu , ,  - L 

=-mac - ~ r r ? u , ~ .  2 1  

This last expression is obtained by the use of Euler’s theorem on the only term of the 
Lagrangian that is weakly non-zero, this term being of second order in the 2 s .  (This is 
equivalent to the use of the relations (3 .6) . )  Using the expression (3.6) for the rr’s in the 
definition ( 3 . 1 ~ ~ )  for s,, we find the further weak equality I i jsps4 = -r7ulcL, in which we 
have assumed that the symmetric inertia matrix is non-singular and possesses an inverse 
given by = Slk .  Hence the Hamiltonian finally reduces to the following simplified 
expression by the use of the constraints: 

def 
H,, = -moc2+&jspsq. (4.2) 

In order to evaluate the multipliers in (4,1), we require the PBS of Ha with the 
constraints (simplified by using the constraints if necessary). For convenience in writing 
these expressions we introduce the following notation (cf (2.5)): 

We confirm later (when we have derived the Hamilton equations) that these are the 
components of the angular velocity (2.2) expressed in terms of the canonical variables. 
Using this notation we list the PBS of Ho with the constraints, that are non-zero (we allow 
the constraints to simplify the brackets if necessary). 

These brackets are required in the ‘consistency conditions’ (below), and with these 
equations we are in a position to work out most of the values of the multiplier functions 
arising in the total Hamiltonian H. 

4.2. The consistency conditions and the determination of the multipliers 

The canonical equation of motion for any function g of coordinates, momenta and 
proper time is 

14.4) 

When the subsidiary conditions (3.3), (3.4), (3.7), (3.8) are substituted for g in turn, and 
the results set to zero, we deduce the values for the multipliers. These equations are the 

dg/d.r = War -{g,  HI = W8.r  - {g, Ho) - pok,  40) - p d g ,  +ai) - . . . . 
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‘consistency conditions’, and they ensure that the proper time derivatives of all the 
constraints vanish. Using the values of the mutual PBS of the constraints given in table 1, 
and the values of the PBS of Ho with the constraints given in (4.3), we find the following 
30 consistency conditions: 

2 4 1  

1 

d 0 = - c  -2moc P O  =o,  

4, = 0, 

&hi = - c - l e i p n ~ d \ O n  +poi  - moc voi = 0, 

4 ; j = 2 v i j = 0 ,  

X o i z - ~ s p w d \ O i - ~ c & k i p S p ~ O k + 2 m ~ C 4 h O i ~ b  1 1 +mot 2 4  Poi I =o, 

4 O j  ir -P b i  + SjvO + TC&ik$pvOk = 0, 

4 2 4  $6 2moC p0-2moC AOkVOk = 0,  
2 4  

);O C-l&ipnSiWd\On -skPOk = 0, 

1 
X j j  “ - (Ao jP .b j+AojPb j ) -TC(&kipho j+&kjpho i )SpYok  -2/.Lij =o.  

We have used the values of some of the v’s from the sixth equation in simplifying some 
of the other equations. On using the subsidiary conditions, we have the following 
unique solution for 24 of the multipliers, in which it is assumed that mo and sisi are 
non-vanishing (we have omitted the details of the derivation): 

Po = 0, Poi C - l & i p n [ W p  mOC2(SkSk)-1Sp]AOn, 
I 1 - 1  -2 -1 -2  (4.5) 

(4.6) 

p o = - ~ m o c  , F b i = i m o c  hOj, pi j=0 ,  v O = o ,  v j j = o ,  
-1 --2 voj mo1C-3(SkSk)-1&jpnSpAon = mo c ( r ; r k 7 ) - l p U r j U .  

The six multipliers pi j  remain undetermined since the constraints q5ij are first class. The 
rest of the multipliers have been determined by successive elimination using the 
second-class constraints. In this elimination the intermediate results 

(4.7) 
are found, and these lead to the values of the v’s given in (4.6). The alternative 
expression in (4.6) has been derived from relations given in appendix 2. 

Thus, of the 30 subsidiary conditions we started with, six are first class, leaving an 
even number of second-class constraints. The first-class constraints have no effect on 
the equations of motion; and the number of independent second-class constraints must 
be an even number for the multiplier rule to apply, otherwise these second-class 
constraints are not independent (Dirac 1964). 

3 Aoi -mot E i p k S p v O k t  sjvoi = 0 

4.3. The total Hamiltonian and Hamilton’s equations 

With the explicit values (4.54, (4.6) for the multipliers, the total Hamiltonian reduces to 

H =  -moc2+&opSp +~o i&i  + ~ b q 5 b  +~bi4bi + voixoi 

(4.8) 

We omit the first-class constraints since the equations arising from the hij and the nij are 
not needed. This conforms with Shanmugadhasan’s treatment in which the multipliers 

= -3moc2+3WpSp+pOinOi-3mo - 1  c -2 ( p p + ~ o i u t ) ( p , - 2 m o c  2 voirj,). 
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corresponding to the constraints that do not modify the canonical equations are set to 
zero. 

The canonical covariant Hamilton equations for the total Hamiltonian (4.8) arise 
from the same canonical equations (4.4) by substituting g = x p ,  U:, mo, AOlr  p, ,  r?, no, 
no, in turn. When we adjoin the subsidiary conditions (3.3), (3.4), (3.7), (3.8), these 
equations should give the correct equations derivable from the Lagrangian equations. 
These Hamilton equations are 

14.9) 

U? = -aH/ar,, = - U ~ ~ ( P ~ + A ~ ) - C ~ ’ E , ~ ~ W , U ~ ,  14.10) 

(4.111 

(4.12) 

i p  = -aH/ap, -m~‘c-*(p’+A”),  - 

rite = -aH/ano = 0, 

Aol = -aH/ano, = -moc vor - c EtlkW,ho&, 

p’ = aH/ax, = 0,  

7jr = aH/au,, = -$m;’c-*A 01 ( p g  + A ’1 - C ’ E t l k U l r ; ,  

2 4  1 

(4.131 

(4.14) 

(4.151 

(4.16) 

4.4. Verification of the Hamilton equations and the completeness of the constraints 

We now show that the Hamilton equations (4.9)-(4.16), when taken with the subsidiary 
conditions (which, incidentally, include the Frenkel condition), are consistent and give 
rise to all the correct equations. These equations are the Hamilton equations for the 
free particle equations (1.1) in terms of coordinates and momenta. The equation (4.9) is 
the equation for the momentum (3.5), and (4.11) and (4.13) establish the constancy of 
mo and pcL .  Equation (4.10), by contraction with U,,, leads us to identify U ,  with the 
components of angular velocity (2.2); and (4.10) then represents (2.4b) in which 

(4.17) 2 
U y x ,  = -moc vol. 

(4.18) 

from (4.14). The equations (4.15) and (4.16) merely indicate that the derivatives of the 
second-class constraints of (3.3) vanish as expected. From all these equations and from 
equations (4.7), which follow from the values of the v’s, we verify that the derivatives of 
the first-order Lagrange equations and of the secondary constraints are satisfied. These 
lead to the equations 

h”X, =A,X, =A”’A, =ho,ho, = O .  

The derivation of the equations (2.1 l), (2.12) is obtained as follows. The equations 
(4.18) are used in (4.9) to find p p :  

2 pl* = moc2.iw -2.rrpu:ii-‘, = moc i +  - 2 r ~ ” u ~ ’ i C - ’ ,  = moc2i& + s g V i U ,  

and the equations (2.12) may be obtained directly from (4.10) and (4.14) using the 
definition of s,, The equations (2.1 l ) ,  subject to the Frenkel condition, result from the 
same equations using the definition of s@” and the weak equation (A2.4): 

jcLv = 27j~lLu~? +2,,.jfihr1 = -2m-1 o c  -2p[f iA”I = -2p1wi’! 
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Thus we have verified that the total Hamiltonian (4.8) is correct for the model, and 
we have incidentally verified that we have a complete set of constraints. The omission 
of any of these constraints would have severe consequences in the evaluation of Dirac 
brackets. The calculation of these brackets, based on the complete set of constraints, is 
given in 11. 

5. Conclusion 

We have derived the complete set of canonical constraints and the covariant Hamilton 
equations for the Lagrangian for a classical particle with spin. We have initially used 
Dirac’s theory of canonical multipliers as modified by Shanmugadhasan (1973) to 
derive the first two types of phase space constraint. The precise method of deriving the 
constraints is not important, but the verification of their completeness is. We note that 
Dirac’s theory cannot here be used iteratively (by the use of the multiplier rule) to create 
new constraints, and that Shanmugadhasan’s modification is itself insufficient for the 
correction of this. The fact that the iterative use of the multiplier rule does not lead to 
the determination of all the constraints is illustrated by observing that not all of the 
constraints that we have called ‘secondary’ are deducible from the original ones by using 
the multiplier rule. The extra work that is necessary to derive them is not covered by the 
Dirac theory. (This is not a special situation and many instances may occur in Dirac’s 
theory where the multiplier rule cannot be used to obtain all the constraints in an 
iterative manner.) 

Three types of subsidiary condition are met. (This generalises Shanmugadhasan’s 
treatment where only two types arise.) We have called these conditions: (i) first-kind 
conditions-arising directly from the singularity of the Lagrangian (e.g. the zero 
momenta conjugate to the multipliers); (ii) second-kind conditions-arising from the 
first-order Lagrange equations (explicitly or implicitly); (iii) secondary constraints- 
arising from the derivatives of the first-order Lagrange equations. In general, Dirac’s 
multiplier rule cannot be used to deduce conditions (ii) from conditions (i), nor to 
deduce conditions (iii) from conditions (i) and (ii). It is surprising that despite many 
accounts of Dirac’s method, only Shanmugadhasan’s (1973) indicates this in the general 
theory, and his method for the construction of conditions (ii) has been put into practice 
in this derivation. Shanmugadhasan’s treatment is limited to those Lagrangians that 
satisfy the requirement that the time derivatives of all the first-order Lagrange 
equations hold by virtue of all the undifferentiated Lagrange equations, so the special 
method for constructing conditions (iii) has been given. 

Finally we note that the method of introducing extra constraints in Dirac’s theory- 
known as ‘Dirac gauge constraints’ (Dirac 1958,1959)4s an alternative to the method 
of Lagrange multipliers. These constraints need not be connected with the Lagrangian 
or the Lagrange equations but the use of these constraints is necessary. We believe that 
the method of Lagrange multipliers is a far better method because there is no doubt of 
its accuracy; it takes account of the momenta conjugate to the multipliers, which may be 
first- or second-class functions. 

Appendiv 1. The Lagrangian equations 

In this appendix we give details concerning the manipulation of the quantities U P  and 
their derivatives. In 9 A l . l  below, we derive (2.3) for the angular velocity four-vector, 
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using the equivalent expressions representing the orthonormality relations (2.1). In 
9 A1.2 we derive ( 2 . 4 ~ )  for the rates of change of the U’S in terms of the undifferentiated 
U ’ S ,  which include the ‘extra’ (non-classical) terms. In 9 A1.3 we derive the Lagrangian 
equations from the Lagrangian (2.7) independently of the previous calculations. 

Al.1 

The relations &jj!&ku = E , ~ , ~ U ? U Y X ~  express (2.1) in a tensor form analogous to i = j A 

k, . . . for the moving frame. Using these and (2.2), we find that 

1 def 1 
U’* = @;up =Z - -TCEuA, ,U~(--Rh*)U:’xT.  W ;  = - ~ C E , A , , ~ U  f u  ?U YX r, 

(We have used the result (A2.2) expressing the orthonormality relations.) The result 
(2.3) then follows. 

A1.2 

In order to remove the rates of change ri, from the expression (2.3), we use (2.3) and the 
derivatives of the relations (2.1) to find an alternative form for the following: 

In deriving this result, we have used (A2.2) and the generalised Kronecker delta value 
8f:: in terms of Kronecker delta symbols, for the contraction of &-symbols. Contrac- 
ting the second term of the expression ( A l . l )  with u,, leads to 

1 Y + .  -rij*u;]u,, =+U;&, - - g , U ,  U,, = U :  -x‘”i-”lu,,, 
where we have again used (A2.2) and also the orthonormality relations and their 
derivatives. Hence 

U ?  = w v u j & , ,  = i r w i  .I - U‘[*U;’. 

Using the complete result ( A l . l )  we therefore find that WLY has the value given in 
( 2 . 4 ~ ) .  The expression (2.4b) is found by using the definition of wLI and the previous 
relations in § A l .  1 .  

A1.3 

It is perfectly possible to use the relations involving the €-symbol in 0 A l . l  in a 
Lagrangian formalism with multipliers, in place of the 10 orthonormality relations. The 
advantage in doing this would be that we would have no need to assume a right-handed 
ordering of the axes. However, such a formalism (with the three-suffix alternating 
symbol in these relations removed to the right-hand side of the equation) would require 
the use of 12 multipliers, not all of which would be independent. This would unduly 
complicate the formalism, so we have instead used the simpler Lagrangian (2.7), which 
contains 10 independent multipliers and which does not imply a right-handed ordering 
of the axes. These Lagrangian equations have been given previously (Ellis 1975a). 
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The Lagrangian (2.7) is expressed in terms of the coordinates and velocities by using 
(2.2) and (2.5) to convert the spin-energy term into an expression containing these 
variables only. The first-order Lagrange equations for the variables mo, Aoi, and 
A i j ( = A j i )  are the orthonormality relations x”x,, = 1 and (2.1). We need not assume a 
right-handed ordering of the set of four axes x F ,  u t  until the identification of the 
canonical spin components with the mechanical ones is required. The equations (2.11) 
and (2.12) are obtained as follows. The second-order Lagrange equations are the 16 
equations 

(A1.2) 

where the p’s and r’s are the generalised momenta corresponding to the x’s and U ’ S .  

The derivatives in (A1.2) are now listed: 

p p  + aL/ax, = 0, 7jf + aL/aui,, = 0, 

1 2  aL/ax, = 0, aL/aui, = - X  & p ; , , , & q k l I p q u ~ L i i h ,  + + A ; ~ U Y ,  

def 
p p  = -aL/ax, = m o c 2 i +  -hoiu:,  (A1.3) 

The first of the equations (A1.2) immediately gives 

p ”  = O .  (A1.4) 

Certain components of the second may be evaluated by defining various combinations 
of (A1.3) as in (2.9). We have the following equations (the orthonormality relations and 
their derivatives have been used in only the first of these): 

.ir = - C - ~ E , ~ ~ [ T ~ L ~ ~ , ,  - ( ~ L / ~ U ~ , , ) U ~ , ]  

= ( S r n S j p  - Srp6jn)UtujJpqOq 

= ~ - ~ & r p s I p q ~ q ~ s ,  (A1.5) 

(A1.6) 

where the symmetry of Aij has been used in both (A1.5) and (A1.6), and the expression 
(A1.5) uses the definition of the components of the angular velocity (2.2). The 
identification of the canonical spin components with the mechanical ones is made from 
the values of the last set of derivatives in (A1.3), as follows: 

(A1.7) 

(A1.8) 

In (A1.7) we have used the orthonormality relations and the definitions (2.2), (2.5), and 
in (A1.8) we have used the ‘oriented’ relations and the definitions (2.2), (2.5), (2.6). 

Finally, we calculate the four-momentum given by (A1.3). This requires the values 
of the multipliers Aoi, which are obtained by contracting the second of equations (A1.2) 
with x,, : 

(A1.9) 

j F ”  = 2~\’,4:] -2(aL/aui[,)u:I = 2Aoiu\’liY1 = - 2 ~ [ ~ i ” ~ ,  

-1 1 
s r  = 

S ’ L Y  = 2 & 4 , ?  = - C E @ v A T  IpqwqupAx., = 

&rj j ryu j”  = -ZCSrpIpq&qklLiFU1u = Irquq = S y e c h ,  

- C E p ~ A ~ S f ; e c h  - ~v 
X I  = Smech. 

A o j  = -+rX,, + a c 2 & p ; m & q k l I p q u ~ u ~ u l ~ ,  = 2TfXF. 

(We have taken account of the dependence of Ipq on 7.) We find that 

(A1.lO) p p  = moc2Xfi - 2 r y u y i U  = moc2iF -274‘uy7i:’, = moc 2 i* + s f i v i v .  
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We have thus deduced the free spinning particle equations (A1.4)) (A1.6), for which the 
internal components of canonical spin and the canonical spin tensor have the mechani- 
cal values (A1.7), (A1.8), and for which the canonical momentum is given by (Al.10). 

Appendix 2. The second-class constraints 

The 24 second-class constraints that we have used in the present problem are the 
constraints (3.4), (3.7), (3.8) and the constraints (3.3) excluding the third set of six. With 
the use of all of these constraints we may construct further constraints which may be 
used to replace some of them in any different formulation of the problem. These 
constraints are also used in the present problem to simplify PBS after differentiations 
have been performed and to simplify the variables in DBS before or after DBS are 
calculated. 

The definitions ( 3 . 1 ~ ) )  in vector notation, are 

S = U‘ A mm, y’ = -2u[w . & I ,  A @  = A  U P ,  

U’* = m i 1 c - 2 ( p +  +A’*) ,  cs+ = s  * U P ,  

representing, in terms of canonical variables, respectively the internal components of 
spin, the spin tensor, the four-vector corresponding to the multipliers hot, the four- 
velocity and the ‘four-spin’. The three values of the canonical multipliers calculated 
from (4.6), v = m01c-21sl-2s A A, are taken to be definitions. Using all the second-class 
constraints with the exception of those in (3.3), we have the following weak relation- 
ships: 

2 s+”u,. = 0 ,  A @ U +  = 0, p)*zj+ = m o c  , p’*u, = A ,  

p+s+ = 0, 
(A2.1) 

all of which are easily verified. The Frenkel condition of spin, for example, is an 
alternative second-class constraint. The 10 second-class constraints (3.4) representing 
the orthonormality relations are directly equivalent to the 10 independent components 
contained in the equation 

U @ u o - - u + .  uYzg+” .  (A2.2) 

This may be verified by contracting the equation with U’S and U’S. Using the further set 
of second-class constraints (3.7), we also find m+ * U ”  + m“ * u p  = 0, which are again 
verified in a similar way by contraction. From this result we have s+“ 5 2 1 ~ ~  * U ”  and 
m,  = - ~ s w y u , .  (The first arises from the definition of s’*”, and the second by the 
contraction of the first with U , ,  and by the use of (3.4).) Using the definition of s, we 
deduce from the second expression that 

72, -2s 1 A U @ .  (A2.3) 

We now verify the further expression contained in (4.6) and the expression (4.71, 
used in the evaluation of some of the multipliers. From (A2.3) and the weak relation- 
ships given above, we find that 

p+p,+lAI2=moc 2 1  , 
P’A, = bI2, 

1 

1 2 2  p+mW = -2s A A = -$mot Is\  Y = moc2(m+ - m+)v. 
This verifies the second expression of (4.6). From the definition of v ,  and by the use of 
(3.8), we find equivalently that A = -moc s A v where s - v = 0, which verifies (4.7). 2 
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The following products of U’S and T’S are also required: 
2 2 2ufTj~  EijkCSk,  4T?Tj, = c sisj - Is/ 8,’ 

4# . f l u  = sfiusav E= (s(2uF . -c2s’Isy. 

Contracting the last result with l ~ l - ~ p ,  and using the previous results yields 

-2mOc2”L v = 2 ( ~ ~ ~ s , ) - ~ s ~ ~ s , ~ p , ,  = A  &. (A2.4) 

The first weak result of (A2.4) has been used in the covariant Hamilton equations. The 
second enables us to express m;c4 weakly in terms of the p’s and the s’s, from (A2.1). 
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